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Abstract. An improved numerical scheme to calculate all speed 
ows on unstructured meshes

is presented. The Navier-Stokes equations are solved both for internal and extenal laminar 
ows.

Three channel con�gurations are used to validate the scheme to internal 
ows and a 
at plate

with di�erent Reynolds numbers is used to validate for external 
ows. The results are compared

with analytical solutions and numerical solutions presented at the literature.
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1. INTR ODUCTION

A large number of reasons can be enumerated in order to show the advantage of uni�ed com-

putational 
uid dynamics methods whic h are able to treat very low speed 
ows, as well as high

speed 
ows. The authors have discussed these ideas in the past (Dourado and Azevedo, 1996),

emphasizing the advantages of all speed methods to treat low speed 
ows. The implemen tation

of the all speed method in the unstructured grid context was derived from still earlier work using

structured grids (Azevedo and Martins, 1993; Martins and Azev edo, 1993; Martins, 1994; Ferrari

and Azevedo, 1995; Ferrari, 1995). In the present work, the objective is to perform a validation

of the capability to simulate laminar viscous 
ows with the proposed methodology.

The paper brie
y presents the formulation adopted, using the Navier-Stokes equations writ-

ten in the conservative form. There is no addition of turbulence models, since the 
o w�elds of

interest are assumed to be laminar. The numerical method is also presen ted with emphasis

in the implemen tation of the arti�cial dissipation terms. The work has demonstrated that a

careful de�nition of these terms, especially in the wall proximity, is fundamental in order to

achive good quality results. Moreo ver, special attention was dedicated to boundary condition

implemen tation. In the authors' experience and as also discussed by Mavriplis (1990), this is

crucial to the correct reprodution of the 
ow phenomena.

The numerical method was validated using both internal and external 
ow test cases. The


ow over a 
at plate was considered as the external 
ow test case. Results are compared in this

case with Blasius' analytical solution for the problem. Flow in a 2-D channel is the internal 
ow



test case. In this case, the development of the velocity pro�le along the channel provides a form

of comparison with other numerical data in the literature (Chen and Pletcher, 1991). Problems

that arose, during the present e�ort, due to less than optimum discretization of boundary layer

regions are also discussed in the paper.

2. FLOW EQUATIONS AND SPATIAL DISCRETIZATION

The adequate formulation to describe the phenomena are the Navier-Stokes equations in

integral and conservative form. For two dimensional 
ow, they are written as
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where Q, Ee, Fe are the conservative 
ow properties and Euler convective 
ow vectors in the

Cartesian directions x and y, respectively as well as Ev and Fv are the viscous 
ow vectors in

these directions, respectively. These vectors are presented in Dourado and Azevedo (1996). The

viscous terms that appear in the expressions of Ev and Fv can be written as
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where ~V is the velocity vector with Cartesian components Vx and Vy, and � the molecular

viscosity coe�cient.

To couple pressure and velocity in those equations, the gasdynamic relation for total energy

e is used and can be written in the following way:
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where e is the total energy per unit of volume, p is the static pressure and � is the density. For

very low speed 
ow, density variations are very small and, therefore, it would be interesting

to have the continuity equation written in terms of another variable. If one could accomplish

this change of dependent variables, then it would be possible to use standard compressible 
ow

schemes, such as those described in Jameson, Schmidt and Turkel (1981) and Jameson and

Mavriplis (1986), to solve Eq. (1). The set of dependent variables adopted in this work is

q = fp; u; v; Tg . (4)

In the present work, the vector q will be referred to as the vector of primitive variables. With

introduction of a Jacobian to make the variable substitution, Eqs. (1) can be rewritten adopting

the set of primitive variables and the resulting equations are
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where D = @Q=@q is the Jacobian matrix relating conserved and primitive variables. Both

Eulerian and viscous 
ux vectors in this equations are now written as a function of the primitive

variables in Eq. (4). Further details of the method can be found in Azevedo and Martins

(1993), Martins and Azevedo (1993) and Dourado and Azevedo (1996)). Moreover, details

of the unstructured cell vertex discretization of the governing equations can also be found in

Dourado and Azevedo (1996). The adimensionalization of equations follows the work presented

by Chen and Pletcher (1991).



3. NUMERICAL METHOD: TIME MARCHING

The time integration of Eqs. (5), to reach steady state, is based in an explicit, modi-

�ed Runge-Kutta time-marching scheme, following the philosophy presented in earlier works of

Jameson and Mavriplis (1986) and Mavriplis (1988). Explicit methods permit easier paralleliza-

tion as well as they are a cheaper driver to multigrid methods. Although the present work does

not use multigrid acceleration, the code is already being prepared for this type of enhancement

in the future. The �ve-stage hybrid time-stepping scheme used for time integration is given by
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The Di operators which appear in the Eq. (6) include both physical viscous terms and the

arti�cial dissipation terms. The de�nition of these terms as well as of coe�cients �i can be

found in Mavriplis, Jameson and Martinelli (1989).

4. ARTIFICIAL DISSIPATION

The set of equations represented by Eqs. (5) requires the addition of arti�cial dissipation.

This is necessary because the physical viscous terms of the Navier-Stokes equations do not

provide adequate levels of dissipation required by the numerical method, especially at high-

Reynolds-number 
ows (Mavriplis, Jameson and Martinelli, 1989). For this type of 
ow only

highly re�ned mesh throughout the domain provide enough damping to stabilize the numerical

scheme. The usual form to stabilize this type of numerical scheme is to add an operator that

is constructed by a blend of biharmonic and undivided Laplacian terms. In earlier work, the

authors used a simple arti�cial dissipation operator. The simple operator proved adequate at the

time because the computational meshes of interest were formed by triangles with low aspect ratio

and the problems only considered inviscid 
ow simulations. However, this simple operator is

not appropriate to treat viscous 
ow, as discussed by Mavriplis, Jameson and Martinelli (1989).

Arti�cial dissipation operators on unstructured mesh normally have been constructed as

a blend of undivided Laplacian and biharmonic operators. The �rst one is responsible for

e�ciently capturing discontinuities and the second one to stabilize the numerical scheme in the

smooth regions of the 
ow. A large number of tests were performed by the authors on the case of


ow over a 
at plate and in two-dimensional channel 
ows using the arti�cial dissipation terms

presented in Dourado and Azevedo (1996). However, the modi�ed arti�cial dissipation terms

presented in Mavriplis, Jameson and Martinelli (1989) yielded better results for these test cases,

at the expense of increased computational cost.

There are two types of regions in the domain: the convective and the viscous regions. The

later occurs, for example, in the boundary layer and in high shear 
ow regions such as wakes.

In these regions, the arti�cial dissipation terms must be much smaller than the physical viscous

terms. For the convective dominated region, the arti�cial dissipation terms must also be carefully

constructed to ensure the accuracy of the scheme. Other authors (Martinelli, 1987; Swanson and

Turkel, 1987; Radespiel and Swanson, 1989) have demonstrated the need for di�erent scaling

of arti�cial dissipation terms in streamwise and normal directions in the viscous regions. The

basic point is the necessity to consider the aspect ratio of the mesh near the viscous regions so
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Figure 1: Symmetric structured triangular mesh in the 2D channel with L=4h.

that the arti�cial dissipation does not interfere with the physical viscous dissipation. The form

proposed by Mavriplis, Jameson and Martinelli (1989) consist in adding arti�cial dissipation

terms similar to those used in a structured mesh approach. This arti�cial dissipation model was

implemented in this work as suggested in that report.

5. BOUNDARY CONDITIONS

For channel 
ows, constant velocity and temperature are imposed at the inlet, and the

pressure is obtained by the actual solution of the equations at the boundary. In the outlet,

the pressure is imposed and the other variables are obtained from the solution of the governing

equations. No-slip conditions are imposed at the wall. The channel 
ows treated in this work

would allow the de�nition of a symmetry plane and, hence, the solution for only half of the

computational domain. However, this was not used here, and a discretization of the complete

computational domain was adopted. The full domain discretization was adopted in order to

avoid any in
uence of this type the boundary condition in the solution.

For 
ows over a 
at plate, velocity and temperature are imposed in the far �eld, pressure

is imposed at the outlet and no-slip conditions was imposed at the wall. Outlet type boundary

condition was tried in the upper part of the domain, but the scheme became unstable. Symmetry

boundary conditions were also tried and they had problems with the far �eld pro�le during the

development of the boundary layer.

Special care was taken in the implementation of the arti�cial dissipation operator in the

proximity of the boundary in order to avoid problems with the velocity pro�le near the wall,

as reported by Dourado and Azevedo (1996). The authors solved this problem following the

procedure presented by Mavriplis (1990) in which the Laplacian operator for the nodes over the

wall must be calculated using projected nodes. This modi�cation is used to ensure that there

are no gradients in the normal direction provided by the arti�cial dissipation terms. The present

investigation showed that this type of solution needs to be adopted even for the Navier-Stokes

equations.

If the special treatment of the arti�cial dissipation operator near the boundaries is not used,

the amount of arti�cial dissipation generated at the wall nodes is larger than the contribution

which comes from the physical viscous terms. The implementation of this special arti�cial
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Figure 2: Velocity contour in the 2D channel with L=4h.

dissipation boundary scheme was adopted for all boundaries in the present work, and not only

for wall boundaries as suggest by Mavriplis (1990), but the authors have not evaluated the

consequences of this approach.

0 1 2 3 4
-1.0

-0.5

0.0

0.5

1.0

Channel 2D. Symmetric Mesh
Re=10, k4=1/256, k2=0 CFL=0.1

Cp

6

5.57143

5.14286

4.71429

4.28571

3.85714

3.42857

3

2.57143

2.14286

1.71429

1.28571

0.857143

0.428571

0

Figure 3: Pressure coe�cient contour in the 2D channel with L=4h.

6. RESULTS

The scheme proposed in this work was evaluated considering two test cases, namely the

external 
ow over a 
at plate and the internal 
ow in a channel. The developing 
ow�eld in a

channel for three di�erent Reynolds number was the internal 
ow test case selected because of

the availability of data for comparison. The Reynolds numbers considered were 0:5, 10 and 75,

based on the channel half height. For the external 
ow test case, the problem of 
ow over a 
at



plate was evaluated and comparisons with Blasius analytical solutions were carried out.

Three di�erent meshes were generated for the channel discretization. These meshes were

obtained by triangulating over a quadrilateral structured mesh. This allows the control of the

orientation of the diagonals which form the triangles from the original quadrilateral mesh. Ac-

tually, for the �rst triangulation, all triangles were constructed with diagonals forming a positive

angle with the x-direction. It was observed, however, that the velocity pro�le exhibit asymme-

tries with regard to the channel centerline when this grid topology was adopted. Therefore, it

was necessary to create symmetric meshes in order to obtain a symmetric numerical solution.

One of these symmetric mesh is shown in Fig. 1. Moreover, the length of the channel varied

in order to obtain fully developed velocity pro�le. Hence, to obtain Re = 0:5, the channel had

a length of 2h, where h is the channel half-height. Similarly, a channel of length 4h is used in

Re = 10 channel test case, and a channel with length 30h is used in Re = 75 channel test case.

The Mach number of 
ow in all channel test case is equal to 0.5. The particular mesh shown in

Fig. 1 has total length equal to 4h.

The results for the case with Re = 10 are presented in Fig. 2 in terms of velocity magnitude

contours. One can observe that the contour lines are fairly smooth and they are also symmetric

with regard to the channel centerline. The pressure coe�cient contours are shown in Fig.

3. Although these contours may seem rather ragged, one should note that they are actually

a lot smoother than the corresponding results available using the arti�cial dissipation operator

described in Dourado and Azevedo (1996). This is an indication of the improvement in resolution

obtained with a more careful treatment of the arti�cial dissipation terms.
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Figure 4: Velocity pro�le at channel end for Re=0.5, 10 and 75 and right-turned diag.

Velocity pro�les at the end of the channel are shown in Fig. 4 for the three di�erent Reynolds

numbers considered in this study. The simulations for the results in Fig. 4 were run using the

asymmetric grids and, hence, one can appreciated the Reynolds number e�ects on the solution

asymmetry for this case. Apparently, the combination of the existence of a preferred direction

in these grids together with the high aspect ratio triangles obtained with such meshes leads to

the inaccuracies in the �nal converged solution. On the other hand, symmetric meshes as the

one shown in Fig. 1 yield correct results for the velocity pro�les.

Figure 5 presents a comparison between the present computational results and those avail-

able in Chen and Pletcher (1991). The agreement is very good for the two higher Reynolds

number cases. For Re = 0:5, the agreement is not as good, but the correct trends are captured

by the present calculation. It is believed at this point that further grid re�nement is necessary
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Figure 5: Center line velocity distribution for Re=0.5, 10 and 75 against Chen and Pletcher.

in order to improve the results for Re = 0:5.
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Figure 6: Triangular structured mesh (41x41).

The calculations for the 
ow over the 
at plate were performed using two di�erent mesh

topologies. One of these was, again, a triangular grid obtained by triangularization over a

structured mesh, whereas the other was a truly unstructured grid generated by the advancing

front technique. The domain non-dimensionalization is performed using a somewhat arbitrary

reference lenght. Using this reference lenght, one can de�ne a reference Reynolds number for

the test case. Hence, for each x-position along the plate, one can calculate a value of Rex
based on the dimentionless distance from the plate leading edge and on the reference Reynolds

number. With this approach, the meshes used have a �xed height, as shown in Figs. 6 and 8,

and the parameter which has actual physical meaning in order to determine the solution at a

given longitudinal station is Rex.

The structured meshes used for triangulation have two dimensionless heights, 0:1 and 0:5,

where in Fig. 6 is possible to see a example of this type of mesh, with dimensionless height

equal to 0:5. The quadrilateral structured mesh used for triangulation to produce this mesh has

41� 41 nodes. The existence of problems with the boundary layer pro�le was the reason which

led the authors to increase the domain height of 0:1 to 0:5. Meshes with re�nement both in

x-direction and/or y-directions were used with this grid type and the best results which could



be obtained with this grid topology are shown in Fig. 7. These results show improvement of

velocity pro�les near the wall in comparison with results presented by Dourado and Azevedo

(1996). This is the consequence of a better treatment of the arti�cial dissipation termes on the

boundary.
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Figure 7: Presents results with 81x41 mesh and Blasius solution.

The tests with a large number of triangularized structured mesh con�gurations led the

authors to believe that the aspect ratio in
uences the quality of the solution for the boundary

layer pro�le. Then, calculations with a truly unstructured grid were also performed. This grid

has localized re�nement which yields a mesh with near equilateral triangles. Two grids were

used, a coarse grid with 2950 nodes and 5504 triangles, and a �ne grid with 27757 nodes and

52758 triangles. The �ne grid was obtained by essentially re�ning the boundary layer region.

The coarse grid is shown in Fig. 8.

A comparison of the results obtained at di�erent plate stations, namely for Rex = 500,

Rex = 1000 and Rex = 3000 are shown in Fig. 9 together with Blasius solution. One can see in

Fig. 9 that the results for this case show a marked improvement with respect to the corresponding

results obtained with the other grid topology. Apparently, the use of nearly equilateral triangles

has a very positive e�ect on the quality of the solutions obtained. Moreover, although a curve is

not shown here for brevity reasons, the friction coe�cient distribution has also presented quite

a good comparison with the theoretical values.

7. CONCLUSIONS

The results presented here show that the present numerical scheme is able to treat both

internal and external viscous 
ows. The necessity of well constructed viscous terms is a funda-

mental point to treat external 
ows. The way of deriving the viscous terms is the basic point

for construction of accurate viscous terms. The heavy computational cost penalties incurred by

the need of having nearly equilateral triangles in the boundary layer indicate that, to explore all

the capabilties of unstructured mesh schemes for viscous dominated 
ow regions, one way have

to resort to hybrid mesh approach as suggested by Mavriplis (1988),(1989).
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